Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
J Virol ; 98(4): e0177123, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38440982

RESUMO

Endogenous retroviruses (ERVs) are remnants of ancestral viral infections. Feline leukemia virus (FeLV) is an exogenous and endogenous retrovirus in domestic cats. It is classified into several subgroups (A, B, C, D, E, and T) based on viral receptor interference properties or receptor usage. ERV-derived molecules benefit animals, conferring resistance to infectious diseases. However, the soluble protein encoded by the defective envelope (env) gene of endogenous FeLV (enFeLV) functions as a co-factor in FeLV subgroup T infections. Therefore, whether the gene emerged to facilitate viral infection is unclear. Based on the properties of ERV-derived molecules, we hypothesized that the defective env genes possess antiviral activity that would be advantageous to the host because FeLV subgroup B (FeLV-B), a recombinant virus derived from enFeLV env, is restricted to viral transmission among domestic cats. When soluble truncated Env proteins from enFeLV were tested for their inhibitory effects against enFeLV and FeLV-B, they inhibited viral infection. Notably, this antiviral machinery was extended to infection with the Gibbon ape leukemia virus, Koala retrovirus A, and Hervey pteropid gammaretrovirus. Although these viruses used feline phosphate transporter 1 (fePit1) and phosphate transporter 2 as receptors, the inhibitory mechanism involved competitive receptor binding in a fePit1-dependent manner. The shift in receptor usage might have occurred to avoid the inhibitory effect. Overall, these findings highlight the possible emergence of soluble truncated Env proteins from enFeLV as a restriction factor against retroviral infection and will help in developing host immunity and antiviral defense by controlling retroviral spread.IMPORTANCERetroviruses are unique in using reverse transcriptase to convert RNA genomes into DNA, infecting germ cells, and transmitting to offspring. Numerous ancient retroviral sequences are known as endogenous retroviruses (ERVs). The soluble Env protein derived from ERVs functions as a co-factor that assists in FeLV-T infection. However, herein, we show that the soluble Env protein exhibits antiviral activity and provides resistance to mammalian retrovirus infection through competitive receptor binding. In particular, this finding may explain why FeLV-B transmission is not observed among domestic cats. ERV-derived molecules can benefit animals in an evolutionary arms race, highlighting the double-edged-sword nature of ERVs.


Assuntos
Retrovirus Endógenos , Gammaretrovirus , Leucemia Felina , Infecções por Retroviridae , Animais , Gatos , Produtos do Gene env/genética , Vírus da Leucemia Felina/genética , Vírus da Leucemia Felina/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Mamíferos/genética , Gammaretrovirus/genética , Gammaretrovirus/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Antivirais/metabolismo
2.
Commun Biol ; 7(1): 350, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514810

RESUMO

Koalas (Phascolarctos cinereus) have experienced a history of retroviral epidemics leaving their trace as heritable endogenous retroviruses (ERVs) in their genomes. A recently identified ERV lineage, named phaCin-ß, shows a pattern of recent, possibly current, activity with high insertional polymorphism in the population. Here, we investigate geographic patterns of three focal ERV lineages of increasing estimated ages, from the koala retrovirus (KoRV) to phaCin-ß and to phaCin-ß-like, using the whole-genome sequencing of 430 koalas from the Koala Genome Survey. Thousands of ERV loci were found across the population, with contrasting patterns of polymorphism. Northern individuals had thousands of KoRV integrations and hundreds of phaCin-ß ERVs. In contrast, southern individuals had higher phaCin-ß frequencies, possibly reflecting more recent activity and a founder effect. Overall, our findings suggest high ERV burden in koalas, reflecting historic retrovirus-host interactions. Importantly, the ERV catalogue supplies improved markers for conservation genetics in this endangered species.


Assuntos
Retrovirus Endógenos , Gammaretrovirus , Phascolarctidae , Infecções por Retroviridae , Humanos , Animais , Retrovirus Endógenos/genética , Phascolarctidae/genética , Infecções por Retroviridae/genética , Gammaretrovirus/genética , Sequenciamento Completo do Genoma
3.
Proc Natl Acad Sci U S A ; 121(6): e2220392121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38305758

RESUMO

Germline colonization by retroviruses results in the formation of endogenous retroviruses (ERVs). Most colonization's occurred millions of years ago. However, in the Australo-Papuan region (Australia and New Guinea), several recent germline colonization events have been discovered. The Wallace Line separates much of Southeast Asia from the Australo-Papuan region restricting faunal and pathogen dispersion. West of the Wallace Line, gibbon ape leukemia viruses (GALVs) have been isolated from captive gibbons. Two microbat species from China appear to have been infected naturally. East of Wallace's Line, the woolly monkey virus (a GALV) and the closely related koala retrovirus (KoRV) have been detected in eutherians and marsupials in the Australo-Papuan region, often vertically transmitted. The detected vertically transmitted GALV-like viruses in Australo-Papuan fauna compared to sporadic horizontal transmission in Southeast Asia and China suggest the GALV-KoRV clade originates in the former region and further models of early-stage genome colonization may be found. We screened 278 samples, seven bat and one rodent family endemic to the Australo-Papuan region and bat and rodent species found on both sides of the Wallace Line. We identified two rodents (Melomys) from Australia and Papua New Guinea and no bat species harboring GALV-like retroviruses. Melomys leucogaster from New Guinea harbored a genomically complete replication-competent retrovirus with a shared integration site among individuals. The integration was only present in some individuals of the species indicating this retrovirus is at the earliest stages of germline colonization of the Melomys genome, providing a new small wild mammal model of early-stage genome colonization.


Assuntos
Quirópteros , Retrovirus Endógenos , Gammaretrovirus , Marsupiais , Animais , Vírus da Leucemia do Macaco Gibão/genética , Nova Guiné , Gammaretrovirus/genética , Murinae/genética , Marsupiais/genética , Células Germinativas
4.
PLoS Genet ; 19(12): e1011083, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38055724

RESUMO

Despite the absence of a confirmed exogenously replicating retrovirus in Canis lupus familiaris (C. familiaris), past retroviral infections are evident in the genomes of living animals via the presence of endogenous retroviruses (ERVs). Although gammaretrovirus-like transcripts and enzyme activities were previously reported to be present in canine leukemias and lymphomas, those findings were not further explored. Initial analysis of the C. familiaris reference genome revealed a minor subset of one ERV lineage, classified as CfERV-Fc1(a), or Fc1(a) here, with features characteristic of recent integration, including the presence of ORFs and identical or nearly identical LTRs. Our previous analysis of whole genome sequence data belonging to extant Canidae revealed a burst of past infections in Canis ancestors resulting in numerous young, polymorphic, and highly intact loci now segregating in dogs. Here, we demonstrate the expression of full-length Fc1(a) proviruses in tissues collected from healthy animals and from animals with cancer. We observed significantly higher expression in samples of dogs with various cancer diagnoses when compared to samples from healthy dogs. Genotyping of insertionally polymorphic Fc1(a) loci identified candidate expressed proviruses and delineated distributions over sample groups. Collectively, the data show that Fc1(a) proviruses retain biological activity in the domestic dog and provides a means to examine potential genetic links with disease states in this species.


Assuntos
Retrovirus Endógenos , Gammaretrovirus , Neoplasias , Animais , Cães , Gammaretrovirus/genética , Provírus/genética , Retrovirus Endógenos/genética , Mutagênese Insercional , Neoplasias/genética , Neoplasias/veterinária
5.
Arch Virol ; 168(12): 298, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38010495

RESUMO

This study focused on the involvement of koala retrovirus (KoRV) in pneumonia in koalas. Three deceased pneumonic koalas from a Japanese zoo were examined in this study. Hematological and histopathological findings were assessed, and KoRV proviral DNA loads in the blood and tissues were compared with those of eight other KoRV-infected koalas from different zoos. Demographic data and routine blood profiles were collected, and blood and tissue samples were analyzed to rule out concurrent infections in pneumonic koalas. KoRV subtyping and measurement of the KoRV proviral DNA load were performed by polymerase chain reaction (PCR) using specific primers targeting the pol and env genes. The results showed that the koalas had histopathologically suppurative and fibrinous pneumonia. Chlamydiosis was not detected in any of the animals. PCR analysis revealed KoRV-A, -B, and -C infections in all koalas, except for animals K10-11, which lacked KoRV-B. Significant variations in the proviral DNA loads of these KoRV subtypes were observed in all tissues and disease groups. Most tissues showed reduced KoRV loads in koalas with pneumonia, except in the spleen, which had significantly higher loads of total KoRV (2.54 × 107/µg DNA) and KoRV-A (4.74 × 107/µg DNA), suggesting potential immunosuppression. This study revealed the intricate dynamics of KoRV in various tissues, indicating its potential role in koala pneumonia via immunosuppression and opportunistic infections. Analysis of the levels of KoRV proviral DNA in different tissues will shed light on viral replication and the resulting pathogenesis in future studies.


Assuntos
Gammaretrovirus , Phascolarctidae , Pneumonia , Infecções por Retroviridae , Animais , Infecções por Retroviridae/veterinária , Gammaretrovirus/genética , Retroviridae/genética , Provírus/genética , Pneumonia/veterinária , DNA
6.
Sci Rep ; 13(1): 7380, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149699

RESUMO

Endogenous retroviruses (ERVs) are genetic elements present in the genome that retain traces of past viral infections. Characterization of ERVs can provide crucial insights into avian evolution. This study aimed to identify novel long terminal repeat (LTR) loci derived from ERVs (ERV-LTRs) absent in the reference genome using whole-genome sequencing data of red junglefowl, gray junglefowl, Ceylon junglefowl, and green junglefowl. In total, 835 ERV-LTR loci were identified across the four Gallus species. The numbers of ERV-LTRs loci detected in red junglefowl and its subspecies gray junglefowl, Ceylon junglefowl, and green junglefowl were 362, 216, 193, and 128, respectively. The phylogenetic tree was congruent with previously reported trees, suggesting the potential for inferring relationships among past junglefowl populations from the identified ERV-LTR loci. Of the detected loci, 306 ERV-LTRs were identified near or within the genes, and some were associated with cell adhesion. The detected ERV-LTR sequences were classified as endogenous avian retrovirus family, avian leukosis virus subgroup E, Ovex-1, and murine leukemia virus-related ERVs. In addition, the sequence of the EAV family was divided into four patterns by combining the U3, R, and U5 regions. These findings contribute to a more comprehensive understanding of the characteristics of junglefowl ERVs.


Assuntos
Retrovirus Endógenos , Gammaretrovirus , Animais , Camundongos , Retrovirus Endógenos/genética , Filogenia , Galinhas/genética , Codorniz/genética , Gammaretrovirus/genética , Sequências Repetidas Terminais/genética
7.
J Virol ; 97(4): e0193222, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022231

RESUMO

High-throughput sequences were generated from DNA and cDNA from four Southern white rhinoceros (Ceratotherium simum simum) located in the Taronga Western Plain Zoo in Australia. Virome analysis identified reads that were similar to Mus caroli endogenous gammaretrovirus (McERV). Previous analysis of perissodactyl genomes did not recover gammaretroviruses. Our analysis, including the screening of the updated white rhinoceros (Ceratotherium simum) and black rhinoceros (Diceros bicornis) draft genomes identified high-copy orthologous gammaretroviral ERVs. Screening of Asian rhinoceros, extinct rhinoceros, domestic horse, and tapir genomes did not identify related gammaretroviral sequences in these species. The newly identified proviral sequences were designated SimumERV and DicerosERV for the white and black rhinoceros retroviruses, respectively. Two long terminal repeat (LTR) variants (LTR-A and LTR-B) were identified in the black rhinoceros, with different copy numbers associated with each (n = 101 and 373, respectively). Only the LTR-A lineage (n = 467) was found in the white rhinoceros. The African and Asian rhinoceros lineages diverged approximately 16 million years ago. Divergence age estimation of the identified proviruses suggests that the exogenous retroviral ancestor of the African rhinoceros ERVs colonized their genomes within the last 8 million years, a result consistent with the absence of these gammaretroviruses from Asian rhinoceros and other perissodactyls. The black rhinoceros germ line was colonized by two lineages of closely related retroviruses and white rhinoceros by one. Phylogenetic analysis indicates a close evolutionary relationship with ERVs of rodents including sympatric African rats, suggesting a possible African origin of the identified rhinoceros gammaretroviruses. IMPORTANCE Rhinoceros genomes were thought to be devoid of gammaretroviruses, as has been determined for other perissodactyls (horses, tapirs, and rhinoceros). While this may be true of most rhinoceros, the African white and black rhinoceros genomes have been colonized by evolutionarily young gammaretroviruses (SimumERV and DicerosERV for the white and black rhinoceros, respectively). These high-copy endogenous retroviruses (ERVs) may have expanded in multiple waves. The closest relative of SimumERV and DicerosERV is found in rodents, including African endemic species. Restriction of the ERVs to African rhinoceros suggests an African origin for the rhinoceros gammaretroviruses.


Assuntos
Evolução Biológica , Retrovirus Endógenos , Gammaretrovirus , Perissodáctilos , Animais , Camundongos , Ratos , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Gammaretrovirus/classificação , Gammaretrovirus/genética , Cavalos/genética , Cavalos/virologia , Perissodáctilos/genética , Perissodáctilos/virologia , Filogenia , Provírus/genética
8.
Genome Biol Evol ; 15(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36542479

RESUMO

Koala populations show marked differences in inbreeding levels and in the presence or absence of the endogenous Koala retrovirus (KoRV). These genetic differences among populations may lead to severe disease impacts threatening koala population viability. In addition, the recent colonization of the koala genome by KoRV provides a unique opportunity to study the process of retroviral adaptation to vertebrate genomes and the impact this has on speciation, genome structure, and function. The genome build described here is from an animal from the bottlenecked Southern population free of endogenous and exogenous KoRV. It provides a more contiguous genome build than the previous koala reference derived from an animal from a more outbred Northern population and is the first koala genome from a KoRV polymerase-free animal.


Assuntos
Retrovirus Endógenos , Gammaretrovirus , Phascolarctidae , Infecções por Retroviridae , Animais , Phascolarctidae/genética , Austrália/epidemiologia , Infecções por Retroviridae/epidemiologia , Infecções por Retroviridae/genética , Retroviridae/genética , Gammaretrovirus/genética
9.
Sci Rep ; 12(1): 15787, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138048

RESUMO

Koala retrovirus is a recently endogenized retrovirus associated with the onset of neoplasia and infectious disease in koalas. There are currently twelve described KoRV subtypes (KoRV-A to I, K-M), most of which were identified through recently implemented deep sequencing methods which reveal an animals' overall KoRV profile. This approach has primarily been carried out on wild koala populations around Australia, with few investigations into the whole-population KoRV profile of captive koala colonies to date. This study conducted deep sequencing on 64 captive koalas of known pedigree, housed in three institutions from New South Wales and South-East Queensland, to provide a detailed analysis of KoRV genetic diversity and transmission. The final dataset included 93 unique KoRV sequences and the first detection of KoRV-E within Australian koala populations. Our analysis suggests that exogenous transmission of KoRV-A, B, D, I and K primarily occurs between dam and joey. Detection of KoRV-D in a neonate sample raises the possibility of this transmission occurring in utero. Overall, the prevalence and abundance of KoRV subtypes was found to vary considerably between captive populations, likely due to their different histories of animal acquisition. Together these findings highlight the importance of KoRV profiling for captive koalas, in particular females, who play a primary role in KoRV exogenous transmission.


Assuntos
Gammaretrovirus , Phascolarctidae , Infecções por Retroviridae , Animais , Austrália/epidemiologia , Feminino , Gammaretrovirus/genética , Retroviridae/genética , Infecções por Retroviridae/epidemiologia , Infecções por Retroviridae/veterinária
10.
Proc Natl Acad Sci U S A ; 119(33): e2122680119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35943984

RESUMO

Koala retrovirus (KoRV) subtype A (KoRV-A) is currently in transition from exogenous virus to endogenous viral element, providing an ideal system to elucidate retroviral-host coevolution. We characterized KoRV geography using fecal DNA from 192 samples across 20 populations throughout the koala's range. We reveal an abrupt change in KoRV genetics and incidence at the Victoria/New South Wales state border. In northern koalas, pol gene copies were ubiquitously present at above five per cell, consistent with endogenous KoRV. In southern koalas, pol copies were detected in only 25.8% of koalas and always at copy numbers below one, while the env gene was detected in all animals and in a majority at copy numbers above one per cell. These results suggest that southern koalas carry partial endogenous KoRV-like sequences. Deep sequencing of the env hypervariable region revealed three putatively endogenous KoRV-A sequences in northern koalas and a single, distinct sequence present in all southern koalas. Among northern populations, env sequence diversity decreased with distance from the equator, suggesting infectious KoRV-A invaded the koala genome in northern Australia and then spread south. The exogenous KoRV subtypes (B to K), two novel subtypes, and intermediate subtypes were detected in all northern koala populations but were strikingly absent from all southern animals tested. Apart from KoRV subtype D, these exogenous subtypes were generally locally prevalent but geographically restricted, producing KoRV genetic differentiation among northern populations. This suggests that sporadic evolution and local transmission of the exogenous subtypes have occurred within northern Australia, but this has not extended into animals within southern Australia.


Assuntos
Retrovirus Endógenos , Evolução Molecular , Gammaretrovirus , Phascolarctidae , Animais , Retrovirus Endógenos/genética , Gammaretrovirus/genética , Variação Genética , New South Wales , Phascolarctidae/virologia , Infecções por Retroviridae/transmissão , Infecções por Retroviridae/veterinária , Infecções por Retroviridae/virologia , Vitória
11.
J Gen Virol ; 103(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35762858

RESUMO

Koala retrovirus (KoRV) is unique amongst endogenous (inherited) retroviruses in that its incorporation to the host genome is still active, providing an opportunity to study what drives this fundamental process in vertebrate genome evolution. Animals in the southern part of the natural range of koalas were previously thought to be either virus-free or to have only exogenous variants of KoRV with low rates of KoRV-induced disease. In contrast, animals in the northern part of their range universally have both endogenous and exogenous KoRV with very high rates of KoRV-induced disease such as lymphoma. In this study we use a combination of sequencing technologies, Illumina RNA sequencing of 'southern' (south Australian) and 'northern' (SE QLD) koalas and CRISPR enrichment and nanopore sequencing of DNA of 'southern' (South Australian and Victorian animals) to retrieve full-length loci and intregration sites of KoRV variants. We demonstrate that koalas that tested negative to the KoRV pol gene qPCR, used to detect replication-competent KoRV, are not in fact KoRV-free but harbour defective, presumably endogenous, 'RecKoRV' variants that are not fixed between animals. This indicates that these populations have historically been exposed to KoRV and raises questions as to whether these variants have arisen by chance or whether they provide a protective effect from the infectious forms of KoRV. This latter explanation would offer the intriguing prospect of being able to monitor and selectively breed for disease resistance to protect the wild koala population from KoRV-induced disease.


Assuntos
Gammaretrovirus , Phascolarctidae , Infecções por Retroviridae , Animais , Austrália/epidemiologia , Gammaretrovirus/genética , Retroviridae/genética , Infecções por Retroviridae/veterinária
12.
Sci Rep ; 12(1): 10485, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729348

RESUMO

The Vietnamese native pig (VnP)-a porcine breed with a small body-has proven suitable as a biomedical animal model. Here, we demonstrate that, compared to other breeds, VnPs have fewer copies of porcine endogenous retroviruses (PERVs), which pose a risk for xenotransplantation of pig organs to humans. More specifically, we sought to characterize non-reference PERVs (nrPERVs) that were previously unidentified in the reference genome. To this end, we used whole-genome sequencing data to identify nrPERV loci with long terminal repeat (LTR) sequences in VnPs. RetroSeq was used to estimate nrPERV loci based on the most current porcine reference genome (Sscrofa11.1). LTRs were detected using de novo sequencing read assembly near the loci containing the target site duplication sequences in the inferred regions. A total of 21 non-reference LTR loci were identified and separated into two subtypes based on phylogenetic analysis. Moreover, PERVs within the detected LTR loci were identified, the presence of which was confirmed using conventional PCR and Sanger sequencing. These novel loci represent previously unknown PERVs as they have not been identified in the porcine reference genome. Thus, our RetroSeq method accurately detects novel PERV loci, and can be applied for development of a useful biomedical model.


Assuntos
Retrovirus Endógenos , Gammaretrovirus , Animais , Povo Asiático , Retrovirus Endógenos/genética , Gammaretrovirus/genética , Humanos , Filogenia , Suínos/genética , Sequências Repetidas Terminais/genética , Transplante Heterólogo
13.
Infect Genet Evol ; 102: 105297, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35533919

RESUMO

We investigated the proviral copies and RNA expression in koala retrovirus (KoRV)-infected koalas. To ascertain any variation in viral load by institution, age, sex, or body condition score, we quantified KoRV proviral DNA and RNA loads in captive koalas (n = 37) reared in Japanese zoos. All koalas were positive for KoRV genes (pol, LTRs, and env of KoRV-A) in genomic DNA (gDNA), and 91.89% were positive for the pol gene in RNA. In contrast, the distribution rates of KoRV-B, KoRV-C, KoRV-D, and KoRV-F env genes in gDNA were 94.59%, 27.03%, 67.57%, and 54.05%, respectively. A wide inter-individual variation and/or a significant inter-institutional difference in proviral DNA (p < 0.0001) and RNA (p < 0.001) amounts (copies/103 koala ß-actin copies) were observed in Awaji Farm England Hill Zoo koalas, which were obtained from southern koala populations, suggesting exogenous incorporation of KoRV in these koalas. Significant (p < 0.05) age differences were noted in KoRV RNA load (p < 0.05) and median total RNA load (p < 0.001), with loads higher in younger koalas (joeys and juveniles). Thus, the current study provides the distribution of KoRV subtypes in Japanese zoo koala populations and identifies several additional risk factors (sex, age, and body condition) associated with KoRV expression.


Assuntos
Gammaretrovirus , Phascolarctidae , Infecções por Retroviridae , Animais , DNA , Gammaretrovirus/genética , Japão/epidemiologia , Phascolarctidae/genética , RNA/metabolismo , Retroviridae/genética , Infecções por Retroviridae/epidemiologia , Infecções por Retroviridae/veterinária
14.
Viruses ; 13(11)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34834962

RESUMO

Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs, and some of them are able to infect human cells. Therefore, PERVs pose a risk for xenotransplantation, the transplantation of pig cells, tissues, or organ to humans in order to alleviate the shortage of human donor organs. Up to 2021, a huge body of knowledge about PERVs has been accumulated regarding their biology, including replication, recombination, origin, host range, and immunosuppressive properties. Until now, no PERV transmission has been observed in clinical trials transplanting pig islet cells into diabetic humans, in preclinical trials transplanting pig cells and organs into nonhuman primates with remarkable long survival times of the transplant, and in infection experiments with several animal species. Nevertheless, in order to prevent virus transmission to the recipient, numerous strategies have been developed, including selection of PERV-C-free animals, RNA interference, antiviral drugs, vaccination, and genome editing. Furthermore, at present there are no more experimental approaches to evaluate the full risk until we move to the clinic.


Assuntos
Retrovirus Endógenos , Infecções por Retroviridae/virologia , Doenças dos Suínos/virologia , Suínos/virologia , Transplante Heterólogo , Animais , Retrovirus Endógenos/genética , Retrovirus Endógenos/isolamento & purificação , Retrovirus Endógenos/fisiologia , Gammaretrovirus/genética , Especificidade de Hospedeiro , Imunossupressores , Infecções por Retroviridae/tratamento farmacológico , Infecções por Retroviridae/prevenção & controle , Infecções por Retroviridae/transmissão , Zoonoses/virologia
15.
Biologicals ; 71: 1-8, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34039532

RESUMO

Xenogenic cell-based therapeutic products are expected to alleviate the chronic shortage of human donor organs. For example, porcine islet cell products are currently under development for the treatment of human diabetes. As porcine cells possess endogenous retrovirus (PERV), which can replicate in human cells in vitro, the potential transmission of PERV has raised concerns in the case of products that use living pig cells as raw materials. Although several PERV sequences exist in the porcine genome, not all have the ability to infect human cells. Therefore, polymerase chain reaction analysis, which amplifies a portion of the target gene, may not accurately assess the infection risk. Here, we determined porcine genome sequences and evaluated the infectivity of PERVs using high-throughput sequencing technologies. RNA sequencing was performed on both PERV-infected human cells and porcine cells, and reads mapped to PERV sequences were examined. The normalized number of the reads mapped to PERV regions was able to predict the infectivity of PERVs, indicating that it would be useful for evaluation of the PERV infection risk prior to transplantation of porcine products.


Assuntos
Retrovirus Endógenos , Gammaretrovirus , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Retrovirus Endógenos/genética , Retrovirus Endógenos/patogenicidade , Gammaretrovirus/genética , Gammaretrovirus/patogenicidade , Ilhotas Pancreáticas/virologia , Suínos , Transplante Heterólogo
16.
Nat Commun ; 12(1): 1316, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637755

RESUMO

Repeated retroviral infections of vertebrate germlines have made endogenous retroviruses ubiquitous features of mammalian genomes. However, millions of years of evolution obscure many of the immediate repercussions of retroviral endogenisation on host health. Here we examine retroviral endogenisation during its earliest stages in the koala (Phascolarctos cinereus), a species undergoing germline invasion by koala retrovirus (KoRV) and affected by high cancer prevalence. We characterise KoRV integration sites (IS) in tumour and healthy tissues from 10 koalas, detecting 1002 unique IS, with hotspots of integration occurring in the vicinity of known cancer genes. We find that tumours accumulate novel IS, with proximate genes over-represented for cancer associations. We detect dysregulation of genes containing IS and identify a highly-expressed transduced oncogene. Our data provide insights into the tremendous mutational load suffered by the host during active retroviral germline invasion, a process repeatedly experienced and overcome during the evolution of vertebrate lineages.


Assuntos
Células Germinativas , Neoplasias/genética , Infecções por Retroviridae/genética , Retroviridae/genética , Animais , Retrovirus Endógenos , Evolução Molecular , Gammaretrovirus/genética , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Humanos , Neoplasias/virologia , Phascolarctidae/genética , Phascolarctidae/virologia , Proteínas Repressoras/genética , Infecções por Retroviridae/virologia , Proteína bcl-X/genética
17.
J Mol Diagn ; 23(4): 447-454, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33385585

RESUMO

Axicabtagene ciloleucel or axi-cel [CD19 chimeric antigen receptor (CAR) T cell] has been recently approved for refractory/relapsed diffuse large B-cell lymphoma and primary mediastinal B-cell lymphoma. Proliferation of CAR T cells after infusion and their persistence have been reported as important factors. Laboratory tools are needed for the monitoring of patients. We developed a vector-based, simple, and accurate real-time quantitative PCR (qPCR) to measure axi-cel vector copy number in peripheral blood samples. Primers and probe targeting the 5'LTR region of the gammaretroviral vector (mouse stem cell virus) were designed for amplification. To generate standard curves, mouse stem cell virus plasmid was subcultured and quantified using droplet digital PCR. The method was applied to quantify vector copy number in blood samples from patients treated with axi-cel. The limit of quantification of the qPCR assay was established at 2.2 copies/µL in DNA eluate. The qPCR method was well correlated with flow cytometry findings; however, the assay appeared to be more sensitive than flow cytometry. The kinetics observed in blood samples from treated patients were in agreement with previously reported findings. In conclusion, we developed a sensitive and accurate qPCR assay for the quantification of transgenic CAR T cells, which can be a useful additional tool for the monitoring of patients treated with axi-cel.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Produtos Biológicos/administração & dosagem , Gammaretrovirus/genética , Vetores Genéticos , Imunoterapia Adotiva/métodos , Linfoma Difuso de Grandes Células B/terapia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Receptores de Antígenos Quiméricos/administração & dosagem , Idoso , Confiabilidade dos Dados , Feminino , Humanos , Linfoma Difuso de Grandes Células B/sangue , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica/métodos , Receptores de Antígenos Quiméricos/genética , Sensibilidade e Especificidade , Transgenes , Resultado do Tratamento
18.
Retrovirology ; 17(1): 34, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008414

RESUMO

BACKGROUND: Koalas are infected with the koala retrovirus (KoRV) that exists as exogenous or endogenous viruses. KoRV is genetically diverse with co-infection with up to ten envelope subtypes (A-J) possible; KoRV-A is the prototype endogenous form. KoRV-B, first found in a small number of koalas with an increased leukemia prevalence at one US zoo, has been associated with other cancers and increased chlamydial disease. To better understand the molecular epidemiology of KoRV variants and the effect of increased viral loads (VLs) on transmissibility and pathogenicity we developed subtype-specific quantitative PCR (qPCR) assays and tested blood and tissue samples from koalas at US zoos (n = 78), two Australian zoos (n = 27) and wild-caught (n = 21) in Australia. We analyzed PCR results with available clinical, demographic, and pedigree data. RESULTS: All koalas were KoRV-A-infected. A small number of koalas (10.3%) at one US zoo were also infected with non-A subtypes, while a higher non-A subtype prevalence (59.3%) was found in koalas at Australian zoos. Wild koalas from one location were only infected with KoRV-A. We observed a significant association of infection and plasma VLs of non-A subtypes in koalas that died of leukemia/lymphoma and other neoplasias and report cancer diagnoses in KoRV-A-positive animals. Infection and VLs of non-A subtypes was not associated with age or sex. Transmission of non-A subtypes occurred from dam-to-offspring and likely following adult-to-adult contact, but associations with contact type were not evaluated. Brief antiretroviral treatment of one leukemic koala infected with high plasma levels of KoRV-A, -B, and -F did not affect VL or disease progression. CONCLUSIONS: Our results show a significant association of non-A KoRV infection and plasma VLs with leukemia and other cancers. Although we confirm dam-to-offspring transmission of these variants, we also show other routes are possible. Our validated qPCR assays will be useful to further understand KoRV epidemiology and its zoonotic transmission potential for humans exposed to koalas because KoRV can infect human cells.


Assuntos
Gammaretrovirus/genética , Phascolarctidae/virologia , Infecções por Retroviridae/veterinária , Infecções Tumorais por Vírus/veterinária , Animais , Animais Selvagens , Animais de Zoológico , Austrália/epidemiologia , Feminino , Gammaretrovirus/classificação , Gammaretrovirus/isolamento & purificação , Gammaretrovirus/patogenicidade , Variação Genética , Masculino , Epidemiologia Molecular , Reação em Cadeia da Polimerase/veterinária , Prevalência , RNA Viral/genética , Infecções por Retroviridae/epidemiologia , Infecções por Retroviridae/transmissão , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/epidemiologia , Infecções Tumorais por Vírus/transmissão , Infecções Tumorais por Vírus/virologia , Estados Unidos/epidemiologia , Carga Viral
19.
Sci Rep ; 10(1): 15013, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929174

RESUMO

Chlamydial disease control is increasingly utilised as a management tool to stabilise declining koala populations, and yet we have a limited understanding of the factors that contribute to disease progression. To examine the impact of host and pathogen genetics, we selected two geographically separated south east Queensland koala populations, differentially affected by chlamydial disease, and analysed koala major histocompatibility complex (MHC) genes, circulating strains of Chlamydia pecorum and koala retrovirus (KoRV) subtypes in longitudinally sampled, well-defined clinical groups. We found that koala immunogenetics and chlamydial genotypes differed between the populations. Disease progression was associated with specific MHC alleles, and we identified two putative susceptibility (DCb 03, DBb 04) and protective (DAb 10, UC 01:01) variants. Chlamydial genotypes belonging to both Multi-Locus Sequence Typing sequence type (ST) 69 and ompA genotype F were associated with disease progression, whereas ST 281 was associated with the absence of disease. We also detected different ompA genotypes, but not different STs, when long-term infections were monitored over time. By comparison, KoRV profiles were not significantly associated with disease progression. These findings suggest that chlamydial genotypes vary in pathogenicity and that koala immunogenetics and chlamydial strains are more directly involved in disease progression than KoRV subtypes.


Assuntos
Infecções por Chlamydia/veterinária , Chlamydia/genética , Complexo Principal de Histocompatibilidade/genética , Phascolarctidae/genética , Animais , Carga Bacteriana , Proteínas da Membrana Bacteriana Externa/genética , Técnicas de Tipagem Bacteriana , Chlamydia/classificação , Chlamydia/isolamento & purificação , Infecções por Chlamydia/epidemiologia , Coinfecção , Feminino , Gammaretrovirus/genética , Haplótipos , Interações Hospedeiro-Patógeno/genética , Imunogenética , Complexo Principal de Histocompatibilidade/imunologia , Tipagem de Sequências Multilocus , Phascolarctidae/imunologia , Prevalência , Queensland/epidemiologia , Infecções por Retroviridae/veterinária
20.
Med Microbiol Immunol ; 209(6): 681-691, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32918599

RESUMO

Chimeric Antigen Receptor (CAR)-redirected T cells show great efficacy in the patient-specific therapy of hematologic malignancies. Here, we demonstrate that a DARPin with specificity for CD4 specifically redirects and triggers the activation of CAR engineered T cells resulting in the depletion of CD4+ target cells aiming for elimination of the human immunodeficiency virus (HIV) reservoir.


Assuntos
Repetição de Anquirina , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , HIV/isolamento & purificação , Imunoterapia Adotiva , Depleção Linfocítica/métodos , Peptídeos/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Relação Dose-Resposta Imunológica , Avaliação Pré-Clínica de Medicamentos , Gammaretrovirus/genética , Vetores Genéticos/genética , Células HEK293 , Infecções por HIV/virologia , Humanos , Ativação Linfocitária , Peptídeos/química , Anticorpos de Cadeia Única/imunologia , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...